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We analyze the influence of a thin polymer layer with lateral side groups on the anchoring of a nematic
liquid crystal. We show that the effective anisotropic part of the anchoring energy depends on the coupling of
the nematic with the polymer side groups, as well as on the coupling of the polymer side groups with the
surface. The relaxation time for the nematic orientation induced by an external field is evaluated by considering
the surface dissipation connected to the relative motion of the nematic director with respect to the polymer side
groups.
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I. INTRODUCTION

The surface properties of nematic liquid crystals depend
on the interaction of the nematic molecules with the support-
ing substrate and on the broken symmetry of the nematic
phase due to the presence of the limiting surface �1�. The
interaction with the substrate depends on the presence of
surface layers since �a� the presence of a surface layer is
responsible for a screening of the substrate �2�, and �b� the
presence of the surface layer can be responsible for new
interactions. In the special case where the surface layer is an
ordered medium particular effects are expected, because in
addition to the physicochemical interactions, the steric inter-
action also has to be taken into account �3–5�. Theoretical
models describing the effects of a Langmuir-Blodgett film on
the surface properties have been proposed in the past �6–8�.
In the present paper we investigate the anchoring of a nem-
atic liquid crystal on a side-chain polymer. These nanostruc-
tured polymeric layers seem very promising for application
in display technology because they allow a continuous con-
trol of the pretilt angle of nematic liquid crystals �9�. Our
paper is organized as follows. In Sec. II we discuss the ef-
fective anchoring energy of a nematic liquid crystal in the
framework of the Rapini-Papoular approximation �10� by
considering simple configurations. In the same section we
propose a mechanical model of the orienting effect of a layer
made by a side-chain polymer on a nematic liquid crystal,
and evaluate the anchoring energy strength. The analysis is
performed in the presence and in the absence of an external
distorting electric field. In Sec. III we consider the relaxation
time in a nematic cell, with different degrees of approxima-
tion, taking into account the weak anchoring and the pres-
ence of the surface viscosity. Finally, in the same section, the
relaxation time of a nematic liquid crystal oriented by means
of a thin layer made of a side-chain polymer is considered.
There we show that, due to the presence of the mechanical
coupling between the nematic director and the surface orien-

tation of the side groups, an additional dissipation term has
to be considered in the equilibrium of the surface torques.
The effect of this term on the relaxation time is discussed.
Section IV is devoted to the conclusions.

II. EFFECTIVE ANCHORING ENERGY

Let us consider a nematic sample in the shape of a slab of
thickness d. The Cartesian reference frame used for the de-
scription has the z axis perpendicular to the limiting surfaces
located at z=0 and d. We assume that the surface treatment is
such to induce weak planar alignment on the surface at z
=0, and strong tilted alignment on the surface at z=d. We
assume that the nematic deformation is contained in a plane,
which we choose as the �x ,z� plane, and characterize the
nematic deformation by means of the angle formed by the
nematic director with the x axis. We indicate by �=��z� the
tilt angle at the point of coordinate z, by �n=��0� the actual
tilt angle on the surface characterized by weak anchoring,
and by � the tilt angle imposed by the surface treatment on
the limiting surface characterized by strong anchoring en-
ergy. We work in the framework of the one-constant approxi-
mation, where the elastic constants for the splay and bend
deformations are assumed identical. In this situation the total
energy of the nematic sample, per unit area, is given by

F = fs + �
0

d

�k/2��d�/dz�2dz , �1�

where fs is the anisotropic part of the surface energy and k
the elastic constant of the nematic liquid crystal. The profile
of ��z� is the one minimizing F. Routine calculations give
for the bulk differential equation satisfied by ��z� the expres-
sion k d2� /dz2=0, which has to be solved with the boundary
conditions �12�

− k�d�

dz
�

0
+

dfs

d�n
= 0 and ��d� = � . �2�

The bulk differential equation states that in the actual de-
formed state the bulk density of mechanical torque vanishes,
with the boundary conditions that the torque due to the bulk
is balanced by the surface torque connected to the aniso-
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tropic surface energy. By solving the bulk differential equa-
tion satisfied by ��z�, taking into account the second of the
boundary conditions �2�, we get for the actual tilt angle the
expression

��z� = �n +
� − �n

d
z , �3�

and the surface tilt angle �n is given by

− k
� − �n

d
+

dfs

d�n
= 0. �4�

We note that the boundary condition �4� can be obtained by
substituting the expression for ��z� given by �3� into �1� and
minimizing the resulting expression for F with respect to �n
�12�. This means that the actual surface tilt angle �n is the
one minimizing F.

A. Standard analysis

In the framework of the Rapini-Papoular approximation
fs��n�= �w /2�sin2 �n, where w is the anchoring energy
strength �10�. By substituting this expression for fs��n� into
Eq. �4� we get

− k
� − �n

d
+

w

2
sin�2�n� = 0, �5�

which determines �n. Equation �5� is a transcendental equa-
tion that can have more than one solution. In this case, the
actual �n is the one minimizing F given by

F =
w

2
sin2 �n + k

�� − �n�2

2d
, �6�

as discussed above. Equation �5� can be rewritten in the form

w = 2
k

d

� − �n

sin�2�n�
. �7�

If w is such that �n�1, the analysis can be linearized. In this
case fs��n�= �w /2��n

2, and the equation determining �n reads

− k
� − �n

d
+ w�n = 0, �8�

from which

�n =
�

1 + wd/k
. �9�

The elastic problem to determine � is well posed, and can be
solved as soon as we know the expression for the anisotropic
part of the surface energy.

B. Effective surface energy of a side-chain polymer layer

Let us consider the case where the aligning layer is a
side-chain polymer. We assume that the surface energy is

fs =
�

2
�p

2 +
�

2
sin2��p − �n� , �10�

where �p is the angle formed by the lateral groups with the x
axis. We suppose that in the absence of any imposed defor-

mation the polymer side group is parallel to the x axis. The
parameter � is connected with the restoring torque of elastic
origin acting on the lateral group. Assuming mesogenic side
groups, the parameter � takes into account the tendency of
the nematic molecules to be parallel, for sterical reasons, to
the side-chain groups. In the case under consideration, the
surface state is characterized by two mechanical coordinates:
�p, related to the orientation of the polymer side group, and
�n, related to the nematic orientation. Since the bulk energy
depends just on the nematic deformation, the total energy per
unit surface is given by

F =
�

2
�p

2 +
�

2
sin2��p − �n� + k

�� − �n�2

2d
. �11�

The equations determining �p and �n are obtained by mini-
mizing F given by Eq. �11�. By imposing �F /��p=�F /��n
=0 we get

��p +
�

2
sin�2��p − �n�� = 0, �12�

−
�

2
sin�2��p − �n�� − k

� − �n

d
= 0. �13�

Let us consider first the case ��p−�n��1, where Eqs. �12�
and �13� can be linearized. In this framework the equations
determining the surface deformations are

��p + ���p − �n� = 0, �14�

− ���p − �n� − �k/d��� − �n� = 0, �15�

from which we obtain

�p =
�

� + �

1

1 + �wed/k�
� , �16�

�n =
1

1 + �wed/k�
� , �17�

where we have put we=�� / ��+��. By comparing �n given
by Eq. �17� with the one given by Eq. �9� we conclude that,
in the linear approximation, the equivalent surface energy
related to the expression for fs given by �10� is we. From the
definition of we it follows that

1

we
=

1

�
+

1

�
. �18�

From Eq. �18� it follows that if �→�, i.e., the side groups
are fixed, we→�, as expected. Equation �18� has been dis-
cussed by other authors in a framework where several forces
are responsible for the anisotropic part of the surface energy
of the nematic liquid crystal �13–15�.

If Eqs. �12� and �13� cannot be linearized, the angle
formed by the lateral side groups with the x axis, �p, de-
pends on the nematic surface orientation �n according to the
relation
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�p =
k

�d
�� − �n� , �19�

and �n is given by the transcendental equation

2
k

�d
�� − �n� + sin	2

k

�d
� − 2�1 +

k

�d
��n
 = 0. �20�

In this case the equivalent surface energy weq can be obtained
by Eq. �7�,

weq = 2
k

d

� − �n

sin�2�n�
, �21�

identifying �n with the solution of Eq. �20�. In the limit of
small �n, weq→we, as expected.

In the case in which, in addition to the side mesogenic
groups, there are present also aliphatic chains, which have
the tendency to impose homeotropic alignment, the surface
energy is

fs =
�

2
�p

2 +
�

2
sin2��p − �n� +

g

2
cos2 �n, �22�

instead of �10�. The coefficient g is connected to the orient-
ing effect of the aliphatic chains. By operating as before, we
find the equations determining �n and �p as

��p +
�

2
sin�2��p − �n�� = 0, �23�

�

2
sin�2��p − �n�� +

g

2
sin�2�n� +

k

d
�� − �n� = 0. �24�

In the linear case, these equations read

��p + ���p − �n� = 0, �25�

− ���p − �n� − g�n −
k

d
�� − �n� = 0, �26�

from which we get

�p =
�

� + �

1

1 + �weffd/k�
� , �27�

�n =
1

1 + �weffd/k�
� , �28�

where we have put weff=we−g, where we has been defined
above. By comparing Eq. �28� with Eq. �9�, we conclude that
the effective surface energy for the present case is weff. The
presence of the aliphatic chains reduces the effective surface
energy responsible for the planar alignment of the nematic
liquid crystal. We observe that the planar easy axis is stable
only if weff�0, which implies g	�� / ��+��. The effective
anchoring energy relevant to the planar alignment tends to
zero when g→�� / ��+��. In the special case where �→�,
weff→�−g, and the planar alignment is stable only if ��g.
In the opposite case where �=0, from Eq. �22� we have fs
= �� /2�sin2��p−�n�+ �g /2�cos2 �n. In this situation �p
→�n to minimize fs. Consequently fs= �g /2�cos2 �n, and the

effective anchoring strength is −g, in agreement with the
definition of weff reported above. According to the discussion
reported above, the presence of the aliphatic chains allows
the control of the effective anchoring energy strength. By
controlling the surface densities of aliphatic chains and of the
mesogenic side chains, we have a method to control the an-
choring �11�.

In the nonlinear case the basic equations of the problem
are Eqs. �23� and �24�, from which we obtain

�p =
1

�
� k

d
�� − �n� +

g

2
sin�2�n�� , �29�

for the angle formed by the polymer side group with the x
axis. The transcendental equation determining �n is obtained
by substituting the expression for �p into Eq. �23�. The
equivalent anchoring energy is then evaluated by means of
Eq. �21�, where �n is the one for the case under consider-
ation. From Eq. �23� a simple calculation shows that, when
�n�1, weq→weff, as expected. We observe that in the limit
of �→0 the easy axis tends to be homeotropic. Hence, the
linear approximation seems not to be satisfactory for small
�.

In Fig. 1 we show weq versus � for different g, and �
=
 /3. In this figure the energies are expressed in units of �.
We introduce �=k /�, which represents the extrapolation
length when � is the anchoring energy strength, and u
=� /d. In Fig. 1�a� we consider the case g=0, corresponding
to the absence of the aliphatic chains. In this case, for �

2 4 6 8 10
Β

0.2

0.4

0.6

0.8

weq

2 4 6 8 10
Β

�0.4

�0.2

0.2

0.4

weq

(a)

(b)

FIG. 1. weq versus � for different g, and �=
 /3. The energies
are expressed in units of �. �=k /�, u=� /d=0.1. �a� g=0 and �b�
g=� /2. The dotted lines represent weff=�� / ��+��−g, valid in the
linear approximation.
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→0, weq→0, and for �→�, weq→�. In the same figure the
dotted line represents we=�� / ��+�� which is the anchoring
energy strength in the linear approximation. In Fig. 1�b� is
reported the case where g=� /2. In this situation, for �→0,
weq→−g=−� /2, as discussed above, and for �→�, weq
→�−g=� /2. In this figure the dotted line represents weff
=�� / ��+��−g, valid in the linear approximation. As is evi-
dent from Fig. 1, the agreement between the linear approxi-
mation and the rigorous solution of the problem is rather
poor for small �. As has been underlined above, this is due to
the fact that for g��� / ��+�� the easy axis is perpendicular
to the surface characterized by weak anchoring. Conse-
quently the tilt angle cannot be considered as small. In this
limit it is possible to obtain the dependence of weq versus �
in a perturbative manner. Let us indicate by ��=� /� and
g�=g /� the anchoring energies connected with the side
chains and with the aliphatic chains, respectively, in units of
�, and u=� /d=k / ��d�. We limit our analysis to the case of
���1, and use it as a small parameter. In the case of ��

=0 from Eq. �23� we obtain �p
0 =�n

0, and from Eq. �24� the
nematic orientation, in this limit, is the solution of the equa-
tion

g�sin�2�n
0� + 2u�� − �n

0� = 0, �30�

which minimizes the total energy per unit area, F= fs
0

+ �k /2d���−�n
0�2, where fs

0= �g /2�cos2 �n
0. Let us consider

now the case of small ��. We put �p
1 =�n

0+����p and �n
1

=�n
0+����n. By substituting these expressions into Eqs. �23�

and �24�, and taking into account Eq. �30� we get, at the first
order in ��,

��p = − �n
0 −

2�n
0

u − 2g� cos��n
0�

, �31�

��n = −
2�n

0

u − 2g� cos��n
0�

. �32�

At the first order in �� the equivalent anchoring weq given by
Eq. �21� is found to be

weq = − g +
2�n

0

sin�2�n
0�

u − g� cos�2�n
0�

u − 2g� cos�2�n
0�

� . �33�

From this equation it follows that when �=0, weq=−g, and
that

�dweq

d�
�

�=0
=

2�n
0

sin�2�n
0�

u − g� cos�2�n
0�

u − 2g� cos�2�n
0�

, �34�

whereas in the linear limit �dweq /d��0=1. Since we are con-
sidering the nonlinear case, 2�n

0 /sin�2�n
0��1, and for �n

0

→
 /2, 2�n
0 /sin�2�n

0�
1, which implies �dweq /d��0
1.
This result shows that for �=0 the limit is correct, but the
numerical values of weq close to �=0 are not well approxi-
mated by the formula valid in the linear limit.

Another interesting case is the one where weq vanishes.
According to Eq. �21� the condition weq=0 implies �n=�. In
this case the boundary conditions �23� and �24� read

��p +
�

2
sin�2��p − ��� = 0, �35�

�

2
sin�2��p − ��� +

g

2
sin�2�� = 0. �36�

From these equations we obtain �p= �g /2��sin�2��, and

g sin�2�� + sin��g/��sin�2�� − 2�� = 0, �37�

which defines the relation among g, �, and � for which
weq=0. In the particular case where g=� /2 and �=
 /3, this
equation gives �c=0.26�, whereas the linear approximation
gives �c=�g / ��−g�, which here gives �c=0.26�, in good
agreement with the value derived from Fig. 1�b�.

C. Anchoring energy and Freedericksz transition

In the analysis reported above we have evaluated the ef-
fective anchoring energy of a polymer layer with side groups
by comparing the profile of the nematic tilt angle in the cell
under consideration with the one in a cell having strong tilted
anchoring on one limiting surface, and weak anchoring on
the other, where the anchoring energy is assumed of the type
proposed by Rapini and Papoular �10�. In this section we
evaluate the effective anchoring energy by assuming that the
imposed deformation is due to an external electric field and
that the anchoring energy is weak on the two limiting sur-
faces. We assume that the dielectric anisotropy of the liquid
crystal is positive ��a�0�, and the external electric field is
parallel to the z axis, E=Ez. The Cartesian reference frame
used in this section has the origin of the z axis in the middle
of the sample, and the limiting surfaces are located at z
= �d /2. In the framework of the Rapini-Papoular approxi-
mation, the energy per unit surface of the nematic cell sub-
mitted to an external field is given by �16�

F =
1

2�w− sin2 ��− d/2� + w+ sin2 ��d/2� + �
−d/2

d/2

�k�d�/dz�2

− �aE2 sin2 ��dz� , �38�

where w� are the anchoring energy strengths on the surfaces
at z= �d /2, respectively. By minimizing F given by Eq.
�38� we get

k�d2�/dz2� + �1/2��aE2 sin�2�� = 0 �39�

for the bulk differential equation, and

�k�d�/dz� + �w�/2�sin�2�� = 0 �40�

for the boundary conditions, at z= �d /2, respectively �12�.
In the following we consider a symmetric sample, for which
w−=w+=w, and hence ��z�=��−z�. In this framework the
fundamental equations of the problem, which are Eqs. �39�
and �40�, read

2�2�d2�/dz2� + sin�2�� = 0 for − d/2 � z � d/2,

�41�

and
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2b�d�/dz� − sin�2�� = 0 for z = − d/2, �42�

where �=
k /�aE−1 is the coherence length and b=k /w the
extrapolation length �12�.

We are interested in the critical field Ec, such that for E
	Ec the stable configuration is the undistorted one, whereas
for E�Ec the stable configuration is distorted. For E�Ec, if
the order-disorder transition is continuous, � is very small,
and the total free energy per unit surface of the sample is

F = w�2 + �k/2��
−d/2

d/2

��d�/dz�2 − �1/�2��2�dz , �43�

where �=��−d /2�=��d /2�, and Eqs. �41� and �42� become

�2�d2�/dz2� + � = 0, �44�

b�d�/dz� − � = 0, �45�

respectively. From Eq. �44� we obtain ��z�=A cos�z /��. By
substituting this expression for ��z� into Eq. �45� we get

A�b sin�d/�2��� − � cos�d/�2���� = 0. �46�

In the deformed state A�0, and from Eq. �46� we have that
the threshold field is defined by

tan�d/�2�c�� = �c/b , �47�

where �c=
k /�aEc
−1, and Ec is the threshold field we are

looking for. To analyze the stability of the deformed state we
have to substitute the expression ��z�=A cos�z /�� into F
given by �43�. We obtain

F = �k/�����/b� − tan�d/�2����A2 cos2�d/�2��� . �48�

It follows that

dF

dA
= 2�k/�����/b� − tan�d/�2����A cos2�d/�2��� , �49�

d2F

dA2 = 2�k/�����/b� − tan�d/�2����cos2�d/�2��� . �50�

Since the actual profile has to minimize F, dF /dA=0 and
d2F /dA2�0. Consequently A=0, which corresponds to the
undeformed state, minimizes F if tan�d / �2���	� /b. On the
contrary, if tan�d / �2����� /b, the stable state is the distorted
one.

Let us consider now the case in which the aligning layer
is a polymer side chain. We do not take into account the
presence of aliphatic chains, imposing homeotropic align-
ment. The total energy, per unit surface, for a symmetric
sample submitted to an external electric field of amplitude E
directed along the z axis is given by

F = ��p
2 + � sin2��p − �n� − �E2 sin2 �p

+ �k/2��
−d/2

d/2

��d�/dz�2 − �1/�2�sin2 ��dz , �51�

where �=�ap�, �ap being the dielectric anisotropy of the
polymer side group, and � the length of the chain connecting
the lateral group to the surface. Close to the threshold �p and

�n are very small, and the expression for F given by �51� can
be rewritten as

F = �� − �E2��p
2 + ���p − �n�2 + �k/2��

−d/2

d/2

��d�/dz�2

− �1/�2��2�dz . �52�

By operating as before we get again ��z�=A cos�z /��, and F
given by �52� becomes

F = �� − �E2��p
2 + ���p − A cos�d/�2����2

− �k/�2���A2 sin�d/�� . �53�

Now F=F��p ,A�. The stable state is such that

�F

��p
=

�F

�A
= 0,

�2F

�A2 � 0,
�2F

�A2

�2F

��p
2 − � �2F

�A � �p
�2

� 0.

�54�

Using �53� we have that the relations �F /��p=�F /�A=0
give

�� − �E2 + ���p − � cos�d/�2���A = 0, �55�

2� cos�d/�2����p + �k sin�d/�� − 2� cos2�d/�2����A = 0,

�56�

which form a homogeneous system. The solution �p=A=0,
corresponding to the undistorted state, is stable if

2� cos2�d/�2��� − �k/��sin�d/�� � 0, �57�

4� cos2�d/�2������ − �E2 + ��„1 − �k/���tan�d/�2���… − ��

� 0. �58�

Since � is a molecular dimension �E2��, and relations �57�
and �58� can be rewritten as

k

��
tan�d/�2��� 	 1, �59�

k

we�
tan�d/�2��� 	 1, �60�

respectively, where we=�� / ��+��, as before. The most re-
strictive inequality between �59� and �60� is the second one.
Consequently the threshold we are seeking is given by
�k /we��tan�d / �2���=1. By comparing Eq. �60� with �47� we
conclude that the effective anchoring energy is we, in agree-
ment with the calculation reported above relevant to the case
in which one of the surfaces was imposing strong anchoring.

Let us consider now the situation where aliphatic chains,
inducing homeotropic alignment, are present. In this case, in
Eq. �51� there is also the term �g /2�cos2 �n��g /2��1−�n

2�,
taking into account the surface energy related to the aliphatic
chains. An analysis of the same type reported above gives
again that the undistorted configuration is stable when
�k /weff��tan�d / �2���	1, where weff=we−g as before.

It follows from the discussion reported above that the
equivalent anchoring energy weq is smaller than � and �.
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Consequently, the presence of the side chains reduces the
anchoring energy, and hence the threshold voltage. The elec-
tric coherence length, indicating the zone where the distor-
tion of the nematic liquid crystal is localized, is proportional
to the inverse of the electrical field inducing the distortion. It
follows that in the presence of a side-chain polymer, at the
threshold, the electric coherence length is larger than the one
when the side chains are absent.

III. RELAXATION TIME

We are interested now in the relaxation of an imposed
deformation, when the distorting field is removed. We con-
sider again a nematic cell in the shape of a slab of thickness
d. The surface treatment is such as to induce planar align-
ment, and the nematic liquid crystal has a positive dielectric
anisotropy. If the nematic cell is submitted to an electric field
E�Ec, where Ec is the threshold field for the Freedericksz
transition, the nematic tilt angle is not constant across the
sample, as discussed in the previous section. If the external
electric field is switched off, the nematic orientation relaxes
toward the planar orientation, imposed by the surface treat-
ment. The evolution of the nematic tilt angle ��z , t� is gov-
erned by the differential equation

k
�2�

�z2 − �
��

�t
= 0, �61�

where � is the bulk viscosity. Equation �61� states that the
bulk density of elastic torque, k�2� /�z2, is balanced by the
viscous bulk density of viscous torque, −��� /�t. The tem-
poral boundary conditions on ��z , t� are ��z ,0�=�0�z�, and
limt→� ��z , t�=0, where �0�z� represents the initial deforma-
tion of the nematic liquid crystal induced by the external
field. The boundary conditions on the coordinate z for ��z , t�
depend on the surface treatment.

A. Strong anchoring

If the surface treatment is such as to give strong anchor-
ing, the relevant boundary conditions are ���d /2, t�=0. Let
us consider first this simple case. The symmetry of the prob-
lem imposes that ��z , t�=��−z , t�. We look for a solution of
Eq. �61� of the type ��z , t�=Z�z�T�t�. By substitutitng this
expression into Eq. �61� we obtain

� 1

Z�z�
d2Z�z�

dz2 � −
�

k
� 1

T�t�
dT�t�

dt
� = 0. �62�

From Eq. �62� it follows that

1

Za�z�
d2Za�z�

dz2 = − a2 and
�

k
� 1

Ta�t�
dTa�t�

dt
� = − a2,

�63�

where a is a constant to be determined. We note that a is real
because limt→� ��z , t�=0. A simple calculation, taking into
account the symmetry of the problem, gives Za�z�
=Ra cos�az�, and Ta�t�=Sa exp�−t /�a�, where Ra and Sa are
constants, and �a= �1 /a2��� /k� plays the role of the relax-
ation time. In this case a is the wave vector of the deforma-

tion. Note that in this framework the relaxation time coin-
cides with the diffusion time for the initial deformation, since
Eq. �61� is a diffusion equation for the tilt angle ��z , t�. The
actual deformation, related to the mode a, is then

�a�z,t� = Aa cos�az�exp�− t/�a� , �64�

where Aa=RaSa. Using the boundary conditions ���d /2, t�
=0, we obtain that the possible values of a are given by an
= �2n+1��
 /d�, where n is an integer. The relevant relax-
ation times, using �a= �1 /a2��� /k�, are then �n=�0 / �2n+1�2,
with �0= �� /k��d /
�2. Since Eq. �61� is linear, the complete
solution is

��z,t� = �
a

�a�z,t� = �
n=0

�

An cos�anz�exp�− t/�n� . �65�

The amplitudes An are determined by the initial condition
��z ,0�=�0�z�, which reads

�0�z� = �
n=0

�

An cos�anz� . �66�

The set of functions un�z�=cos�anz�=cos��2n+1��
z /d��
form an orthogonal basis in �−d /2,d /2�. Consequently, the
inversion of Eq. �66� is simple. The problem is then solved.
The longest relaxation time is �0= �� /k��d /
�2 introduced
above.

B. Weak anchoring

In this case, in the Rapini-Papoular approximation �10�,
the boundary conditions are

�k
��

�z
+

w

2
sin�2�� = 0 �67�

at z= �d /2. Equation �67� states the equilibrium of the
torques at the surfaces. We limit our analysis to the linear
case, where Eq. �67� can be written, at the surface z
=−d /2, as

− k
��

�z
+ w� = 0. �68�

By operating as before, from Eq. �68� we get the eigenvalue
equation in the form

�ad/2�tan�ad/2� = d/�2b� , �69�

where b=k /w is the extrapolation length. Equation �69� has
infinite solutions an. We have again that Eqs. �65� and �66�
hold. The inversion of Eq. �66� is not simple as before be-
cause the set of eigenfunctions un=cos�anz� is no longer or-
thogonal. However, the problem can be solved following the
procedure discussed in �17�.

In the simple case where the anchoring energy is very
weak, b=k /w
d, and from Eq. �69� we get a2=2 / �bd�. It
follows that the longest relaxation time is found to be �w
=�d / �2w�, i.e., it is proportional to the thickness of the
sample and to the inverse of the anchoring energy �18�. Con-
sequently, for a given thickness of the nematic sample, the
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lower the anchoring energy, the longer the relaxation time.

C. Surface viscosity

In the case where in the boundary conditions there is also
a viscous torque, due to the surface viscosity, Eq. �68� reads

− k
��

�z
+ w� + �s

��

�t
= 0, �70�

where �s is the coefficient of surface viscosity introduced by
Derzhanski and Petrov �19� and discussed, among others, by
�20–24�. By operating as before we obtain for the eigenvalue
equation the expression

�ad/2��a��s/�� + tan�ad/2�� = d/�2b� . �71�

From now on to obtain the full solution of the problem it is
necessary to do as described in the previous section.

In the limit of weak anchoring, from Eq. �71� we obtain

a2 =
2

bd

1

1 + 2�s/��d�
. �72�

The relevant relaxation time is then �sv=�w�1+2�s / ��d��,
where �w=�d / �2w� has been defined before. From the ex-
pression for �sv it follows that �sv��w, as expected.

D. Surface layer

If a side-chain polymer is responsible for the nematic ori-
entation, the surface energy, in the linear approximation, is

fs =
�

2
�p

2 +
�

2
��p − �n�2, �73�

where �n=��−d /2�. In �73� we have neglected the presence
of aliphatic chains imposing a homeotropic alignment on the
nematic liquid crystal. The most general quadratic dissipa-
tion function for the two angles �n and �p is

R =
1

2
�1��2 + �2�n��p� +

1

2
�3�p�

2, �74�

where the prime means a time derivative, and �1, �2, and �3
are phenomenological coefficients such that R�0. In the
following we consider the special case �1=�3=−�2=�,
where R= �� /2���p�−�n��

2. In this framework the surface vis-
cous torque on the side groups of the polymer is �v,p
=−�R /��p�=−���p�−�n��, where � is the viscosity relevant
to the dissipation occurring at the interface between the nem-
atic and the side groups of the polymer. The viscous torque
on the liquid crystal is �v,n=−�v,p. According to this model,
the dissipation in the surface layer is related to the relative
motion of the liquid crystal director with respect to the side
groups of the polymer. It is not the dissipation function re-
sponsible for the surface viscosity introduced in �19�, but a
kind of viscosity between two ordered media. The boundary
conditions for the present case are

��p + ���p − �n� + ���p� − �n�� = 0, �75�

− k� ��

�z
�

−d/2
− ���p − �n� − ���p� − �n�� = 0. �76�

From Eqs. �75� and �76� we obtain

�p�t� =
k

�
� ��

�z
�

−d/2
, �77�

which, by taking into account Eq. �64�, can be rewritten as

�p�t� =
k

�
aAa sin�ad/2�exp�− t/�a� . �78�

By substituting Eqs. �64� and �78� into Eq. �75� we get for
the eigenvalue equation the expression

k

�

� + � − ��/�a�
� − ��/�a�

a tan�ad/2� = 1. �79�

For �=0 from Eq. �79� we get

k
� + �

��
a tan�ad/2� = 1, �80�

which is equivalent to

�ad/2�tan�ad/2� = d/�2L� , �81�

where L=k /we, with we=�� / ��+��, as obtained before.
In the limit �→� Eq. �79� gives Eq. �71�, if b is identi-

fied with k /�, and �s with �. These limits are expected be-
cause in the considered case of �→� the effective anchoring
energy is �, and the surface dissipation is related just to the
movement of the nematic liquid crystal.

For a numerical calculation we assume k�10−11 N, �
�10−1 N s /m2 �24�, ��10−5 J /m2 �21�, and ��4�. The
thickness of the sample is supposed to be d�10−5 m. We
consider the case where ��2�10−6 N s /m, which is a
value in the range of the surface viscosity measured for nem-
atic liquid crystals �20,21,24�. The influence of the viscosity
related to the surface coupling beteween the side groups of
the polymer and the nematic liquid crystal can be investi-
gated by considering the function

��a� =
k

�

� + � − ��/�a�
� − ��/�a�

a tan�ad/2� − 1, �82�

whose zeros define the relaxation times of the phenomenon
under consideration. A simple analyis shows that the surface
viscosity increases the longer relaxation time, as shown in
Fig. 2. Using the numerical values reported above, the long-
est relaxation time is �max��=0�=0.156 s, defined by the
largest zero of the function ��a�. In the case of �=2
�10−6 N s /m, �max=0.279 s. In Fig. 2 are reported the
functions ��a� for �=0 �dotted�, and 2�10−6 N s /m �con-
tinuous�. As is evident from Fig. 2, the two curves are coin-
cident for large values of �, and negative. We underline that
the surface viscosity in nematic liquid crystals is assumed of
the order of ��m, where �m is on the nanometer scale �21�.
Other values for this parameter have been reported in �20�
and in �24�. The parameter � introduced by us takes into
account the dissipation connected to the coupling between
the side groups and the nematic liquid crystal. It depends not
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only on the liquid crystal, but also on the coupling at the
interface between the two media. In our analysis we consider
just the influence of � on the longer relaxation time. How-
ever, the presence of � influences all the characteristic times
involved in the relaxation of the initial deformation, in par-
ticular, the shorter one. An analysis of this influence requires
the solution of the complete problem and the determination
of all the modes necessary to describe the initial deformation
of the nematic liquid crystal, and will be the subject of a
further investigation.

IV. CONCLUSIONS

We have considered the aligning properties of a polymer
with side chains on a nematic liquid crystal. The equivalent
anchoring energy of the surface polymer, weq, depends on the
anchoring energy of the side chains and on the sterical inter-
action of the side chains with the nematic liquid crystal. It
has been derived by comparing the nematic tilt angle profile
with that in a cell having a strong tilted anchoring on one
surface, and weak anchoring on the other surface. We con-
sidered also the Freedericksz transition in a symmetric nem-
atic cell. In this case, from the expression for the threshold
field we obtain an expression for weq in agreement with the
one determined with the previous calculation. Finally, we
have considered the relaxation time of an imposed deforma-
tion in a nematic cell oriented by means of a polymer with
side chains. In this case, the dissipation taking place at the
interface between the nematic liquid crystal and the polymer
is equivalent to a surface viscosity connected to a dissipation
function quadratic in the relative angular velocity. In our
analysis the surface energy connected to the deformation of
the side chains has been assumed proportional to the square
of the deformation, in agreement with the usual elastic
theory. Our model can be easily generalized to more realistic
surface energy and dissipation for the polymer side chains.
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FIG. 2. �Color online� Eigenvalue function ��a� versus the re-
laxation time �a=1 /a. The actual relaxation times are the ones de-
termined by the intersection of ��a� with the horizontal axis. The
numerical values used in the calculation are the ones reported in the
text. Dotted line �=0, continuous curve �=2�10−6 N s /m.
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